
R Tutorial 1

Introduction to Computational Science:
Modeling and Simulation for the Sciences, 2nd Edition

Angela B. Shiflet and George W. Shiflet
Wofford College

© 2014 by Princeton University Press

R materials by Stephen Davies, University of Mary Washington
stephen@umw.edu

Introduction
R is one of the most powerful languages in the world for computational science. It is used
by thousands of scientists, researchers, statisticians, and mathematicians across the globe,
and also by corporations such as Google, Microsoft, the Mozilla foundation, the New
York Times, and Facebook. It combines the power and flexibility of a full-fledged
programming language with an exhaustive battery of statistical analysis functions, object-
oriented support, and eye-popping, multi-colored, customizable graphics.

R is also open source! This means two important things: (1) R is, and always will
be, absolutely free, and (2) it is supported by a great body of collaborating developers,
who are continually improving R and adding to its repertoire of features. To find out more
about how you can download, install, use, and contribute, to R, see http://www.r-
project.org.

Getting started
Make sure that the R application is open, and that you have access to the R Console
window. For the following material, at a prompt of >, type each example; and evaluate
the statement in the Console window. To evaluate a command, press ENTER. In this
document (but not in R), input is in red, and the resulting output is in blue.

We start by evaluating 12-factorial (also written “12!”), which is the product of the
positive integers from 1 through 12. We can use R’s built-in factorial() function to

1

accomplish this by typing “factorial(12).” After pressing ENTER or RETURN for the
first computation, R returns the result, as the following prompt (>), input (in red), and
answer (in blue) indicate:

> factorial(12)
[1] 479001600

 An R “function” can be thought of similarly to a mathematical function: it gives an output for certain input(s).
1

When referring to R functions, we typically include an empty pair of parentheses immediately after the function name, as in
sin() or cos(), to make clear that it is a function rather than a simple variable.

http://www.r-project.org/
http://www.r-project.org/

�2

Notice that the number “1” appears in brackets before the answer. You can ignore this
fact for now; for the curious, this is because in R, all values are vector instead of scalar
quantities, and so what factorial(12) actually produces is a vector with one element
(namely, 479001600). For 25!, the following output appears in exponential notation with
e+25 indicating multiplication by 1025, so that the value is 1.5511 × 1025:

> factorial(25)
[1] 1.551121e+25

Quick Review Question 1 Evaluate 100-factorial by typing the appropriate code at the R
console.

R Programs
Many simple operations can be carried out directly at the R console, but often it makes
more sense to write an R program (sometimes also called a “script”) that contains
multiple different commands organized to carry out some more complex operations. You
can open a new script in Windows or Mac by using the “New” command from the “File”
menu. (In Linux, you will simply use your favorite text editor, making sure to save the
file in the R working directory.)

The first part of an R program is often an explanation of what the program does, for
instance:

hurricaneSimulation.R  
Simulate a category-5 tropical storm to 100-km accuracy  
Filbert Lewis  
Jan.10, 2015

The lines above are referred to as comments. Frequently, and especially when
writing R programs (see below), we need a “comment,” or explanation of material, which
we do not want R to execute. We begin a comment line with a # sign (pronounced
“pound” or “hash” or “tic-tac”), as above. R will ignore everything on that line,
considering it fit for only humans to read.

To save a file, we use the familiar “File” menu, entering a file name to which R
appends the extension .R. Save often, particularly before you print, do a long calculation,
or display a graph.

To execute an entire R program, use the source command from the R console, like
this:

> source("filename.R");

For example, if you saved a program under the name “hurricaneSimulation,” you would
run it like this:

> source("hurricaneSimulation.R");

�3

Sometimes, it’s helpful to have R print out the evaluation of every command in
the .R program file as it runs. To do this, we can include the text “,print.eval=TRUE”
after the name of the file, like this:

> source("hurricaneSimulation.R",print.eval=TRUE);

Note that R program files normally don’t have spaces in them, since this can cause
problems. It’s a good idea to capitalize the first letter of each successive word, as in the
hurricaneSimulation example, above. (This is called “camel case” for obvious reasons.)

If, when you type the source() command, you get an error message saying that R
could not find the file (sometimes this error message says something like “cannot open
the connection”), one of three things is probably wrong: (a) you mistyped the filename, or
(b) you forgot to type the “.R” extension as part of the source command, or (c) the folder/
directory that R is using is different from the folder/directory that contains the file. To
diagnose the latter, type the command “getwd()” in the R console (or under the Misc
menu, select Get Working Directory), and press ENTER. This command will print out
the name of the folder/directory that R is looking in. If it does not match the name of the
folder/directory you saved your file in, then this is the problem. You have two choices:
either tell R to change to the correct folder/directory, or else move your file to the folder/
directory R is using. The latter is probably simpler, although if you do this you will need
to remember to save all of your files into that new folder/directory instead of your
original one. To do the first option, under the Misc menu, select Change Working
Directory…, maneuver to the desired directory, and select Open.

Quick Review Question 2
a. Copy the RCTTutorial1.R file to your R programs folder from the course

materials you downloaded and unzipped. (Note that the file should be copied
into your working directory. A common source of error is to save a file in a
different location than where R is looking for it, so be careful.)

b. Open the file in R by using the “Open...” command from the “File” menu. (In
Linux, you will simply use your favorite text editor to edit the file.)

c. Skim the contents of this file. Note that it has a section of comments
demarking each Quick Review Question. From the R console, copy your code
from Quick Review Question 1 (using the “Edit” menu) and paste it into the
appropriate place in the file (namely, immediately below the comment line
that begins “Quick Review Question 1”.) This part of the file should now look
like this:

Quick Review Question 1 Evaluate 100-factorial.  
factorial(100)

Note carefully that the “factorial(100)” line does not have a “>” sign before it:
the “>” sign is simply a prompt that R prints to the console before we type an
interactive command. Note also that the line does not have a “#” sign before it
either, since it is not a comment: we actually want R to execute that command.

�4

d. In the file, find the section for Quick Review Question 2, and add comment
lines as it describes.

e. Save your file.
f. Execute the file RCTTutorial1.R using the source command, with the

“,print.eval=TRUE” included, as described above. Make sure the answer to
the factorial question appears on the R console (and nothing else.) If R cannot
find your file, refer to the last paragraph of the "R Programs" section.

g. Throughout the rest of this tutorial, record all your answers to the Quick
Response Questions in RCTTutorial1.R.

Numbers and Arithmetic Operations
Scalar multiplication in R is indicated by an asterisk (*) (also called a “star” or “splat.”)
Thus, to multiply 5 times 18, we write 5*18, not 5(18) or 5x18. The addition, subtraction,
and division operators are +, -, and /, respectively. The operator %% (called “modulus”)
will give the remainder after dividing two integers. (For instance, 11%%3 gives 2
because 11 divided by 3 is three, with a remainder of two.) An expression can be raised to
a power using a caret (ˆ) (also called a “hat”) as follows:

> 3 * (5/8 - 1.25)^2

Quick Review Question 3 In the appropriate place in your RCTTutorial1.R file, type
commands that will add the fractions (not decimal numbers) one-half and three-
fourths. In the R console, execute your file (using source, with “,print.eval=TRUE”)
as you did before. Note that R prints a decimal expansion instead of the fractions.
(As with all Quick Review Questions, paste your code that added one-half and
three-fourths to the appropriate place in the RCTTutorial1.R file, right below the
comment lines that begin “Quick Review Question 3.”

R has numerous built-in functions, such as sin(), and built-in constants, such as pi
representing π. A function usually has one or more inputs, also called “arguments” or
“parameters.” To use a function, you type the name of the function, followed by
parentheses around the argument(s). (Multiple arguments should be separated by
commas.) For instance, to compute 5 sin(π/3):

> 5 * sin(pi/3)

(Again, the asterisk for multiplication is mandatory.)

Quick Review Question 4 log10(x) is the common logarithm of x, or logarithm to the
base 10. Evaluate the common logarithm of 23.4, and by copying and pasting,
record your answer in RCTTutorial1.R.

�5

Quick Review Question 5 log(x) is the natural logarithm of x, usually written as ln(x) in
mathematical notation. Evaluate the sine of the natural logarithm of 23.4, and by
copying and pasting, record the code to do so in RCTTutorial1.R.

Quick Review Question 6 ex is exp(x) in R. Evaluate the number e2, and by copying
and pasting, record your code in RCTTutorial1.R.

Variables and Assignments
We can employ variables to store values for future use. Variable names must begin with
a letter, and be composed of letters, digits, periods, and underscores. Variable names are
case-sensitive in R, meaning that variables named “length,” “Length,” and “LENGTH”
will all refer to different variables. As mentioned above, the use of camelCase is
recommended for variable names comprised of multiple words.

We can assign a value of an expression to a variable this way:

variableName = expression

This sets the value of the variable called variableName to whatever expression evaluates
to. For example, the following assignment sets the variable called lengthOfBridge to 15:

> lengthOfBridge = 15

R calculates the value of the expression on the right, such as 15, and then assigns the
value to the variable on the left, such as lengthOfBridge. If we subsequently refer to
lengthOfBridge, R replaces lengthOfBridge with its value (15, or whatever it might have
been set to subsequently.)

Note that the statement “lengthOfBridge = 15” is not an assertion that the value of
the variable is 15, but rather a command that instructs R to make the value be 15. For this
reason, the use of the equals sign in this syntax is somewhat misleading, and some R
programmers prefer to substitute the key sequence “<-” instead, as in:

> lengthOfBridge <- 15

(These two statements are equivalent.)

Quick Review Question 7
a. In the console window, assign 4.8 to the variable time and execute the

statement (press ENTER.)
b. Type time at the console and execute. Note how the value was stored and

recalled.
c. Type time + 3 at the console and execute.
d. Type time at the console and execute. Note that the execution of step c did not

change the value of time. This is because R was not told to change time to

�6

hold a new value, but simply to compute the value of time + 3 (and then do
nothing with it.)

e. Now type time = time + 3 at the console and execute.
f. Type time at the console and execute. Note that the variable’s value has now

been updated as desired.
g. Evaluate time3.
h. Paste all the code for these steps into RCTTutorial1.R.

If we use a variable before it has been assigned a value, R returns an error message,
such as “Error: object ’silly’ not found”.

We can clear a variable (i.e., erase its value) by using the “rm” (for “remove”)
command. The argument is the name of the variable we want to clear. For instance, if we
have a variable x whose value is 17.5, and we no longer want there to be a variable x at
all, we can simply type:

> rm(x)

At any time, we can see what variables are defined via the “ls” (for “list”) command:

> ls()

A common technique in R programming is to use a variable to cumulatively sum a
quantity. In these situations, we need the old value of the variable to compute the new
value of the same variable, as in:

> numberOfBirths = numberOfBirths + birthsThisYear

A variation of this technique is to “count” some continuously incrementing quantity over
time. For instance:

> day = day + 1

Again, we stress that these statements do not declare that a variable is equal to itself plus
(say) one, but rather instruct R to set the variable to a new, higher, value.

Quick Review Question 8 Write a statement to assign 34 to variable time and then to
add 0.5 to time, changing its value. Paste the code into RCTTutorial1.R.

In R, a variable can hold a whole sequence of numbers, rather than just a single
number. A sequence of numbers is called a vector. One way to create a vector is by
combining several individual numbers into a vector variable using the “c()” function. As
an example, if we measured the heights (in meters) of various trees in a forest, we could
create a variable called heights that could hold all of the values this way:

> heights = c(21.6, 22.5, 19.8, 20.5)

�7

The heights variable now holds four different numbers, one for the height of each tree we
measured. Typing the name of the variable shows all of its elements:

> heights
[1] 21.6 22.5 19.8 20.5

To extract the value of a single tree’s height, we use the square bracket notation to
specify the index of the value we want:

> heights[1]
[1] 21.6
> heights[3]
[1] 19.8

There are other ways of quickly creating sequences of numbers. The function
“seq()” creates a vector with numbers in a sequence, given a starting and ending number:

> years = seq(1994,2011)
> years
[1] 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008  
[16] 2009 2010 2011  

(Note that there are so many values in this vector that the elements “wrap around” to a
second line. The number in brackets at the start of each line ([1], [16]) give the index of
the element at the start of that line, for easy reference.)

Also, the colon notation can be used as a more compact way of defining these
vectors. The expression “1994:2003” is a shorthand for “all the integers (whole numbers)
between 1994:2003.”

> years = 1994:2003
> years
[1] 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

Returning to the seq function, we can also add a third argument to specify the
increment (or “step”) between values, if we want the values to increase by something
other than 1. For instance:

> years = seq(1992,2012,4)
> years
[1] 1992 1996 2000 2004 2008 2012

Variables in R are not always numeric; they can also contain text data, known as
“character strings.” For instance, one could declare a variable this way:

> myName = "Stephen"

Note the use of double-quotes to specify character strings. If we had omitted the
quotation marks in the previous example, R would have given an error message because
it would have been looking for a variable named “Stephen” to assign to the variable
myName, instead of treating “Stephen” as a value.

�8

Quick Review Question 9 Use the c() function to create vector variables for each of the
following:
a. A vector called ages with values 19, 21, 21, and 20.
b. A vector called names with values “Ruth,” “Callixte,” and “Talishia.” (Note:

this should be a vector of three values, the first of which is “Ruth” and the last
of which is “Talishia.” It should not be a vector of just one value, whose value
is “Ruth, Callixte, Talishia.”)

c. Paste your code for these items into the appropriate place in RCTTutorial1.R.

Quick Review Question 10 Use the seq() function to create vector variables for
each of the following:
a. A vector called itemNumbers with all the whole numbers between (and

including) 10000 and 10005.
b. A vector called pipeFittings with all the even numbers between (and

including) 32 and 48.
c. A vector called timeChecks that contains numbers from 0 to 4, in increments

of .25 (in other words, the vector should have the values 0, 0.25, 0.5, 0.75, 1,
1.25, etc.)

d. Now use the colon notation to recreate the itemNumbers vector (from step a)
without the use of the seq() function.

e. Paste your code for these items into the appropriate place in RCTTutorial1.R.

User-defined functions
Frequently, we wish to define our own functions that we can use again and again. As with
variable names, by convention, we begin the name of such a user-defined function with
a lowercase letter.
Suppose we wish to define the function sqr(x) = x2 in R. At the console, we can type:

> sqr = function(x) x^2

This tells R that a new function variable called sqr is to be set equal to a function of a
variable x , and that the value of sqr(x) should be x2.

We can “call” (or “invoke”) the function on a particular value just like we did for
the built-in functions factorial(), c(), and seq():

> sqr(14)
[1] 196

User-defined functions longer than this are typically written in an R program file as part
of a larger program, rather than typed into the console. However, the syntax is the same.

Quick Review Question 11
a. Define a function quick(x) = 3sin(x - 1) + 2. (Be careful to remember how to

express multiplication in R. Typing “3sin(x-1)+2” will not work.)

�9

b. Evaluate the function at x = 5.
c. Paste the code for both the function and the evaluation into RCTTutorial1.R.

Online documentation
R has an extensive help system built in to the console that is very easy to use. To find out
information about a particular function (whose name you know), you can type “?”
followed by the name of the function. For instance,

> ?sin

brings up a page of information about sine, as well as other related trigonometric
functions. (Linux users should press “q” (for “quit”) to return to the R console.)
Alternatively, from the Help menu, we can select R Help, and then an option, such as
Search Engine & Keywords.

If you need help on a topic but aren’t sure what the exact name of the R function is,
you can also search the help system for a word or phrase. To do this, type “??” (two
question marks) followed by your search string. You will be presented with a list of all
the R help topics that contain that string. For instance, suppose you want to perform a
statistical test of proportions (this is a statistical test to compare whether the proportions
in two groups are significantly different from each other; for instance, whether the
proportion of 15-year-olds who regularly play videogames differs from the proportion of
18-year-olds who do.) You aren’t sure of the name of the R function, so you guess
“proportion.” Typing “?proportion,” however, gives a “no documentation” message. So
you decide to search the help system by typing:

> ??proportion

Scanning the results, you see that stats::prop.test is a function that will perform a “Test of
Equal or Given Proportions.” This tells you that prop.test() is the function you want to
use. (Note that the “stats::” prefix is a package name. Packages in R are related sets of
functions and data files that are grouped together. You don’t need to type the name of the
package to use a function, but you can.)

To get specific help about how to use the prop.test() function, you could then type:

> ?prop.test

(with just one question mark.)

Quick Review Question 12 At the R console, access the help page for the built-in
function log10. Scroll through this help page, then return to the R console. Paste the
code to do so as a comment line in RCTTutorial1.R.

Quick Review Question 13 Suppose you do not know the R command to perform a
standard deviation. Typing “?standard” and “?deviation” do not yield any results.

�10

Use the help system to search for the word “deviation” and see if you can discover
the name of the function. Record your findings in RCTTutorial1.R.

Displaying
Sometimes, particularly when doing error checking, we wish to display intermediate
results. To do so, we can employ the cat function. (“cat” stands for “concatenate.”) cat’s
arguments are a list of character strings that should be concatenated (or “stuck”) together.
In order to get cat to print a newline (carriage return / line feed) after it prints a result, the
two-character sequence “\n” must be added. For instance, the following command prints
a friendly hello:

> cat("Why hello there",myName,"!!\n")
Why hello there Stephen !!

Note that this command provided three character strings to stick together in the output:
(1) “Why hello there,” (2) the value of myName (which is “Stephen” or whatever that
variable’s current value is), and (3) a string with two exclamation marks and the newline
sequence.

Numeric values, of course, can also be printed:

> gpa = 3.5
> year = 2011
> cat("Your GPA in",year,"was",gpa,".\n")

Your GPA in 2011 was 3.5.

Quick Review Question 14 Write a statement to assign the value 3 to t. Then, use
the cat function to display “Velocity is”, the result of the computation -9.8t, and “m/
sec.” The output for the command should be as follows:

Velocity is -29.4 m/sec.

Paste your code for this into RCTTutorial1.R.

Looping
It is often advantageous to be able to execute a segment of code a number of times. For
example, to obtain the velocity for each integer time ranging from 1 to 1000 seconds, it
would be inconvenient for the user to have to execute one thousand statements assigning
a time and computing the corresponding velocity. Some method of automating the
procedure is far more preferable. A segment of code that is executed repeatedly is called a
loop.

Two types of loops exist in R. When we know exactly how many times to execute
the loop, the for loop is a good choice. One form of the command is as follows:

for (i in min:max) {

�11

expr
}

Recall that the notation min:max is a shorthand for seq(min,max), meaning that it
represents a vector containing the entire sequence of numbers from min to max, including
both end points. In this loop, then, the index or loop variable is i; and i takes on integer
values from this sequence. For each value of i, the computer executes the body of the
loop, which is expr, the statements between the curly braces.

For example, suppose, as the basis for a more involved program, we wish to
increment a variable called dist (for “distance”) by 2.25 seven times. We initialize the
variable to 0. Within a for loop that executes 7 times, we calculate the sum of dist and
2.25, and assign the result of the expression to dist, giving the variable an updated value.
Because the for loop does not return a value and we are not printing intermediate values
of dist, we display the final value of dist after the loop with the cat() function:

dist = 0
for (i in 1:7) {

dist = dist + 2.25
}
cat(dist,"∖n")
15.75

Quick Review Question 15 Write a segment of code to assign 1 to a variable d. In a
loop that executes 10 times, change the value of d to be double what it was before
the previous iteration. After the loop, type cat(d,"\n") to display d’s final value.
Before executing the loop, determine the final value on your own so you can check
your work. Then test your code, and paste it into the appropriate place in
RCTTutorial1.R.

In the next loop, we increment dist by 2.25, compute time as

� , and then print out the distance and time for each time step.

dist = 0
for (i in 1:7) {

dist = dist + 2.25
t = (24.5 - sqrt(600.25 - 19.6 * dist))/9.8
cat("For distance",dist,", time = ",t,"∖n")

}
For distance 2.25 , time = 0.0935885
For distance 4.5 , time = 0.1909672
For distance 6.75 , time = 0.2926376
For distance 9 , time = 0.3992227
For distance 11.25 , time = 0.5115127
For distance 13.5 , time = 0.6305354
For distance 15.75 , time = 0.7576699

€

24.5 − 600.25 −19.6dist
9.8

�12

(A couple of notes on printing output: (1) notice that an extra space appears between the
distance and the comma (“,”) in the above output. This is because by default, the “cat()”
function pads its concatenated outputs with spaces. If you want to suppress these
extraneous spaces, you can add the argument “sep=""” to the cat() command. (2) The
time values are printed with many decimal places. To round to (say) two decimal places,
you can use the round() function, passing the value you want rounded as the first
argument, and the number of decimal places as the second argument. This modified
program, and its output, appears below:)

dist = 0
for (i in 1:7) {

dist = dist + 2.25
t = (24.5 - sqrt(600.25 - 19.6 * dist))/9.8
cat("For distance ",dist,", time = ",round(t,

2),"∖n",sep="")
}
For distance 2.25, time = 0.09
For distance 4.5, time = 0.19
For distance 6.75, time = 0.29
For distance 9, time = 0.4
For distance 11.25, time = 0.51
For distance 13.5, time = 0.63
For distance 15.75, time = 0.76

The previous example did not use the loop index in the loop’s body. However, the
following example of cat() and for with an index i displays both i and i-factorial (i!) with
spaces between the values for i, going from 1 through 9:

for (i in 1:9) {
cat(i," ",factorial(i),"\n")

}
1 1  
2 2  
3 6  
4 24  
5 120  
6 720  
7 5040  
8 40320  
9 362880

To start the display with the value of 0!, which is 1, we indicate a beginning value of 0, as
follows:

for (i in 0:9) {
cat(i," ",factorial(i),"∖n")
}

Quick Review Question 16 For this question, complete another version of the code
segment above that displays distance and time. In this version, do not initialize dist.

�13

Employ a loop with an index i that takes on integer values from 1 through 7. Within
the loop, the value of dist is computed as 2.25i.

The code below is provided as a starting point in RCTTutorial1.R. After replacing
each xxxxxxxx with the proper code, execute the program, and compare the results with
the similar segment above.

for xxxxxxxxxx
dist = xxxxxxxxxx
t = (24.5 - sqrt(600.25 - 19.6 * dist))/9.8
cat("For distance ",dist,", time = ",round(t,2),"

seconds.∖n")
xxxxxxxxxx

Quick Review Question 17
a. Define the function qrq17 to be ln(3x + 2). Recall that log is the R function for

the natural logarithm.
b. Write a loop that prints the value of k and qrq17(k) for k taking on integer

values from 1 through 8.
c. Put all of this code into RCTTutorial1.R.

The other main type of loop that R supports is the while loop, which we will cover
in future modules.

Plotting

We employ the “plot()” command for graphing two-dimensional functions. First, we
establish a sequence of values for the independent variable, such as t. Recall that we
employed sequences earlier as vector variables and in loop iterations. For example, “0:9”
indicates the sequence 0, 1, ..., 9. For a smooth display of a graph, however, we need to
plot additional points. To indicate a step size of 0.1, we could call the function like
seq(0,9,0.1). The following statement assigns such a sequence to t:

> t = seq(-1,2,.1)
> t
[1] -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
0.4  
[16] 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9  
[31] 2.0

Now that we have an independent variable, we can use the plot() function. The
basic form of the command gives the independent variable (such as x and the function
(such as g()) to graph, as follows:

plot(x, g(x))

For example, the following command graphs cos(t) with t varying from -1 to 2 by 0.1:

�14

> t = seq(-1,2,.1)
> plot(t,cos(t))

R displays the resulting graphics in a figure window.

Quick Review Question 18 Graph esin(x) from -3 to 3. Experiment with different step
increments, to see how it affects the graph display. Paste the code to generate this
plot with 0.1 increments into RCTTutorial1.R.

We can indicate additional options, and R revises the display to reflect our changes.
For example, xlab and ylab options generate axes labels, which should appear in all
scientific graphics. The following command will annotate the graph with sensible labels:

> plot(t,cos(t),xlab="t",ylab="cos(t)")

Quick Review Question 19 Adjust your answer to the previous Quick Review
Question to label the x and y axes appropriately. Paste the modified code into
RCTTutorial1.R.

We can plot several functions on the same graph by using the points() function
immediately after our initial plot(). The arguments are the same:

> plot(t,cos(t))
> points(t,.5*t+.4)

The second command in this sequence adds points to the plot according to the function
y(t) = .5t + .4. We could change the shape (say, to the letter ‘X’) and color (say, to
purple) of these new points by including those arguments to points() as well:

> plot(t,cos(t))
> points(t,.5*t+.4,pch=’x’,col=’purple’)

pch (plot character), col (color), xlab, and ylab (labels) are just a few of the many
different parameters you can give to R graphics functions to format your output just the
way you want it.

Differentiation (Optional)

If we have a function f(x), we can numerically compute its derivative in R using the D
function. D takes two arguments: an “expression” (i.e., the definition of the function as a
symbolic expression) and the independent variable, enclosed in double-quotes. This
function returns an object which can be evaluated using the “eval()” function for specific
values of the independent variable.

For example, consider the following function for the height of a ball thrown into the
air:

�15

y = -4.9t2 +15t + 11

First we create the function itself:

> y = function(t) -4.9*t^2+15*t+11

Then, to differentiate it, we need to specify an expression (instead of a function):

> yexp = expression(-4.9*t^2+15*t+11)

and then differentiate it using the D function. The first argument is the expression to
differentiate, and the second is a character string giving the independent variable:

> dy = D(yexp,"t")
> dy
15 - 4.9 * (2 * t)

Note that this is the symbolic derivative of the original y function.
Now, we create a vector of t values (specifying the starting and ending values, and

the increment (time step)):

> t = seq(0,4,.1)

And now we can plot the original function y in one color, and its derivative (using eval)
in another:

> plot(t,y(t),col="green")
> points(t,eval(dy),col="blue")

The green dots represent the y function evaluated at each t point, and the blue dots
represent its derivative at each t point. Observe that the green dots show the trajectory of
the thrown ball over time, while the blue dots show its velocity (rate of change). The blue
dots continually decrease (indicating that the ball is being pulled down by the force of
gravity) and they cross the x-axis (i.e., the derivative is zero) precisely where the green
dots reach their maximum (i.e., where the ball ascends to its highest height, and is about
to fall again.)

Quick Review Question 20 Give R code to do the following:
a. Create a function y = 2.9 sin(0.03x).
b. Create an expression fexp = y = 2.9 sin(0.03x). so that it can be differentiated.
c. Differentiate the expression using the D function (don’t forget the second

argument.) Assign that differentiated expression to a variable df.
d. Create a vector called x that contains values from -200 to 200 by twos.
e. Plot the function f vs the x vector. Use parameters pch and col to draw the plot

points with red X’s.

�16

f. Add to the plot the derivative df vs the x vector. Use parameters pch and col to
draw the plot points with purple O’s. (Don’t forget you’ll need to use the eval
function.)

If you did the above steps correctly, your plot should look like Figure 1. Paste this code
into RCTTutorial1.R.

Figure 1 Output for Quick Review Question 20.

!

Integration (Optional)

If we have a function f(x), we can numerically integrate it in R using the integrate
function. integrate takes three arguments: a function, the starting x value (i.e., lower
boundary) of the integration, and the ending x value (i.e., upper boundary) of the
integration.

�17

For instance, to find the value of ! , we type:

> f = function(t) -t^2+10*t+24
> integrate(f,0,5)
203.3333 with absolute error < 2.3e-12

The message about the “absolute error” tells us how accurate the numerical integration
was (in this case, it is accurate to nearly 12 decimal places.)

Quick Review Question 21 Compute the definite integral of sin2(x) from 0 to 2π.
Paste this code into RCTTutorial1.R.

Checking your work
At this point, you should be able to execute your RCTTutorial1.R program and get output
similar to the following:

> source("RCTTutorial1.R",print.eval=TRUE)  
[1] 9.332622e+157  
[1] 1.25  
[1] 1.369216  
[1] -0.01114314  
[1] 7.389056  
[1] 4.8  
[1] 7.8  
[1] 4.8  
[1] 7.8  
[1] 474.552  
[1] -0.2704075  
Velocity is -29.4 m/sec.  
1024  
For distance 2.25, time = 0.09 seconds.  
For distance 4.5, time = 0.19 seconds.  
For distance 6.75, time = 0.29 seconds.  
For distance 9, time = 0.4 seconds.  
For distance 11.25, time = 0.51 seconds.  
For distance 13.5, time = 0.63 seconds.  
For distance 15.75, time = 0.76 seconds.  
k=1, qrq17(k)=1.609438  
k=2, qrq17(k)=2.079442  
k=3, qrq17(k)=2.397895  
k=4, qrq17(k)=2.639057  
k=5, qrq17(k)=2.833213  
k=6, qrq17(k)=2.995732  
k=7, qrq17(k)=3.135494  
k=8, qrq17(k)=3.258097  
3.141593 with absolute error < 2.3e-09

(−t 2 +10t + 24) dt
0

5

∫

�18

with a plot similiar to Figure 1 appearing.
2

Additional Features
In order to save typing, R allows you to scroll backwards through the previous commands
you have entered. You do this by pressing the up arrow, ↑, once per command. Each
time you press it, you go to the previous command you entered. Using the left (←) and
right (→) arrows, you can edit one of these lines in order to enter a modified command.
Pressing ENTER (even when the cursor is not at the end of the line) will actually carry
out the command.

Quick Review Question 22 Using the arrow keys, go back to the factorial(25)
command you entered much earlier in this tutorial, change it to evaluate 24-
factorial, and execute the command.

R also will tab complete the names of functions, parameters, and other system
objects so that you don’t have to type long names in their entirety (or guess their
spelling). This is a very useful feature that can save you time and make you more
productive as you use R. As an example, as.integer() is an R function that will convert
textual data to numeric data. (For instance, as.integer("4500") will convert the text string
“4500” into the integer 4,500.) Instead of typing “as.integer” in its entirety, you can type
“as.i” and then press the TAB key. The remaining letters in “as.integer” will
automatically appear.

As another example, suppose you want to run a proportion test (such as in the
videogame example earlier in this tutorial.) Recall that the R function to perform this test
is called prop.test. If you type “prop” and then press TAB, R will complete the next two
characters “.t” because those come next. However, there are also other R functions that
begin with the letters “prop.t” and so R only completes as much as it knows. If you now
press TAB twice, R will show you all of these functions, so that you can decide which
one you wish to type.

Now suppose you wish to set the “alternative” parameter to this function, in order to
specify an alternative hypothesis. Once you have “prop.test(” typed in its entirety, you
can type “al” followed by TAB. The name of this entire parameter will appear without
you having to type it.

It may seem like a small thing to save a few characters of typing. However, the
ability to quickly press TAB and have R complete your intention, mistake-free, can be
very powerful when used consistently. It also saves you from having to remember the
exact spelling and phrasing of every command and parameter.

 Note that every time you call the plot() function, the contents of the new plot completely replace any previous plot.
2

You can instead cause new plots to appear in new windows by calling x11() (Linux/Mac) or windows() (Windows)
immediately before calling plot() a second or subsequent time.

�19

Quick Review Question 23
a. Let R tab-complete the name of the “aggregate” function for you.

(“aggregate” is a built-in R function for splitting data into subsets and giving a
summary of each subset.) At the R console, type “agg” followed by TAB.
Notice that the entire word “aggregate” appeared.

b. Now type a parenthesis to begin the parameter list “(”. You want to specify a
value for the “formula” parameter. Type “for” and press TAB. Notice that
nothing happened — this is because R can’t guess what you want to type,
since more than one parameter begins with the letters “for”. Press TAB a
second time. Now you see a list of all the parameters that begin with the
letters “for”. You see “formula” in the list, so type “m” and press TAB once
more. Now the whole word “formula” appears.

Quick Review Question 24 At the R console, set a variable called
touchdownPercentage to the value .15. Now suppose you want to increase the value
of touchdownPercentage by .1. Using tab-completion, execute the R command

touchdownPercentage = touchdownPercentage + .1

(Hint: type “touch” and press TAB each time you need to type the variable name.)

We can select text and cut, copy, and paste it using items from the “Edit” menu or
the shortcuts indicated on that menu.

To quit R, close the application as you normally close others on your operating
system (perhaps by clicking an “X” icon, for example.) You will be prompted as to
whether you wish to save your current workspace. A “workspace” is a collection of R
objects that you have created while you’ve worked in R. (You can see a list of these
objects by typing ls() at the R console.) For now, when you quit, you won’t need to
worry about saving your workspace. However, when you begin to write real programs, it
may be advantageous to save your workspace between sessions. This way, when you
return to R, all of your work will be restored just as if you’d never quit.

