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Introduction 
This and the next module are for the student who has not had Calculus I or who wants a 
review of the material to prepare for the remainder of the course. The concept of rate of 
change from the current module is particularly important.  The material in the next 
module is important but optional to understanding the remainder of the text. The required 
calculus background for the text is minimal, and students do not need to know formulas 
to understand the material or develop the models. 
 Calculus is the mathematics of change. The concept of instantaneous rate of 
change, or derivative, from a first course in calculus is used throughout the text.  For 
example, we consider the rates of change of populations of predators and prey to study 
the dynamics of their populations.  The speed with which a radioactive substance decays 
certainly impacts the amount present at a particular time.  In physics or as we drive a car, 
the rate of change of position with respect to time is the velocity. 
 Differential calculus, which deals with problems involving the derivative, is one of 
the two major parts of calculus.  The other is integral calculus, which we consider in the 
next module.  These two modules consider the concepts of differential and integral 
calculus that we need to solve modeling problems. 

Velocity 
We begin the discussion of instantaneous rate of change by considering the average rate 
of change.  Suppose on a windless day someone standing on a bridge holds a ball over the 
side and tosses the ball straight up into the air.  After reaching its highest point, the ball 
falls, eventually landing in the water.  The ball's height above the water (y) is a function 
(s) of time (t), so we write y = s(t).  Figure 2.3.1 gives a plot of a ball's height in meters 
versus time in seconds, while Table 2.3.1 lists some of the function's values.  The graph 
is not a plot of the ball's trajectory, which is straight up and then straight down again.  
The height of the ball at water level is y = 0 m, and a negative value of y indicates that the 
ball is under water. 
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Figure 2.3.1 Height (y) in meters versus time (t) in seconds of a ball thrown straight up 
from a bridge 
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Table 2.3.1 Table of times and heights for a ball thrown straight up from a bridge  
Time (t) in seconds Height (y) in meters 

0.00 11.0000  
0.25 14.4438  
0.50 17.2750  
0.75 19.4938  
1.00 21.1000  
1.25 22.0938  
1.50 22.4750  
1.75 22.2438  
2.00 21.4000  
2.25 19.9437  
2.50 17.8750  
2.75 15.1937  
3.00 11.9000  
3.25 7.9938  
3.50 3.4750  
3.75    -1.6563  

 

Quick Review Question 1 Consider the ball of Figure 2.3.1 and Table 2.3.1 in 
approximating the following, giving values and units: 
a. The height of the bridge 
b. The maximum height of the ball 
c. When the ball reaches its maximum height 
d. When the ball hits the water 
 

 As Figure 2.3.1 and Table 2.3.1 indicate, the ball changes position as time passes.  
The ball starts at one speed, moving up, and then slows down to a stop because of the 
effect of gravity.  Subsequently, the ball starts to fall, picking up speed as it does, until 
finally splashes into the water,   
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 We can approximate the velocity at any particular time t if we know the heights at 
times shortly before and after t and compute the average velocity over that time period.  
Thus, an understanding of average velocity is essential to that of instantaneous velocity, 
or instantaneous rate of change of position with respect to time.  The average velocity is 
the ratio of the change in height, or position, to the change in time.  For example, if at 
noon we are 60 km from home and at 2:00 p.m. 260 km from home, then over that time 
period, we drove at an average speed of (260 - 60)/2 = 100 km/hr.  For the position 
function s(t), the average velocity is the average rate of change of s with respect to t.  
From Table 2.3.1, we see that the average velocity in the first second, which is from time 
a = 0 sec to time b = 1 sec, is as follows: 

 average velocity from 0 to 1 seconds = 

� 

s(1) − s(0)
1.00 − 0.00

= 21.1000 −11.0000
1.00

 = 10.1 m/sec 

The units for average velocity, meters/second, are the units for the numerator, which are 
meters, over the units for the denominator, which are seconds.   
 
Definition Suppose s(t) is the position of an object at time t, where a ≤ t ≤ b.  The 

average velocity, or the average rate of change of s with respect to t, of the 
object from time a to time b is 

  

� 

average velocity = change in position
change in time

= s(b) − s(a)
b − a

 

 

Quick Review Question 2 Determine the average velocity of the ball from Table 2.3.1 
a. From t = 1 sec to t = 2 sec 
b. From t = 1 sec to t = 3 sec 

 
 In the Quick Review Question 2, you should have determined the average velocity 
from 1 to 2 seconds to be 0.3 m/sec.  Thus, on the average, the ball is moving faster the 
second before than the second after t = 1 sec.  We can approximate the velocity of the 
ball at the instant t = 1 sec by finding the mean of the average velocities during the first 
second (10.1 m/sec) and the next second (0.3 m/sec), as follows: 

 approximation of velocity at t = 1 sec = 

� 

10.1+ 0.3
2

 = 5.2 m/sec 

Equivalently, we can evaluate the average velocity between times on either side of t = 1 
sec.  However, it is best to use known heights for times as close to t = 1 sec as possible, 
in this case for t = 0.75 sec and t = 1.25 sec. 
 

Quick Review Question 3 Approximate the velocity of the ball at t = 1 sec by finding 
the average velocity from a = 0.75 sec to b = 1.25 sec. 

 
 A slight variation in the notation for determining the average velocity from a to b is 
advantageous for calculus.  Instead of using b, we consider b = a + ∆t, the initial time (a) 
plus a change in time, ∆t = b - a, with ∆t pronounced delta-t (∆ is the fourth letter of the 
Greek alphabet).  For example, if a = 0.75 and b = 1.25, then ∆t = 1.25 - 0.75 = 0.50 sec, 
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which is the change in time; and b = a + ∆t = 0.75 + 0.50 = 1.25 sec.  The following 
definition employs this notation. 
 
Definition Suppose s(t) is the position of an object at time t, where a ≤ t ≤ b.  Then the 

change in time, ∆t, is ∆t = b - a; and the change in position, ∆s, is ∆s = s(b) - s(a).  
Moreover, the average velocity, or the average rate of change of s with respect to 
t, of the object from time a to time b = a + ∆t is 

  

� 

average velocity = change in position
change in time

= Δs
Δt

= s(b) − s(a)
b − a

= s(a + Δt) − s(a)
Δt

 

Quick Review Question 4 Suppose we wish to determine the average velocity of the 
ball in Table 2.3.1 from time 2.25 sec to time 3.0 sec.  Using the notation of the 
definition of average velocity involving ∆t, determine the following, including 
units: 
a. a 
b. s(a) 
c. ∆t 
d. a + ∆t  
e. s(a + ∆t) 
f. ∆s 
g. The average velocity 

 
 To obtain the instantaneous velocity at t = 1 sec—that is, the exact velocity of the 
ball precisely one second after it starts to move, we determine the average velocity with 
changes in time, ∆t, closer and closer to 0.  Our answers approach a particular number, 
the instantaneous velocity at t = 1 sec.  We say that we are taking the limit of the 
average velocities as ∆t approaches 0, and we write the following: 

 

� 

instantaneous velocity at 1 sec = lim
Δt→0

s(1 + Δt) − s(1)
Δt

 

In the quotient, ∆t can be positive or negative, but not zero. 
 
Concept Suppose that as x approaches some number c, f(x) approaches a number L.  

We say the limit of f(x) as x approaches c is L, and we write 
  

� 

lim
x→c

f (x) = L 
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Definition  The instantaneous velocity, or the instantaneous rate of change of s 
with respect to t, at t = a is 

  

� 

instantaneous velocity at a sec = lim
Δt→0

s(a + Δt) − s(a)
Δt

 

 the limit of the average velocity from t = a to t = a + ∆t as ∆t approaches 0, 
provided the limit exists. 

  
 Table 2.3.2 gives additional values of s(t), possibly obtained experimentally, for t 
close to 1 along with the average velocities between each such time and t = 1.  The table 
is in two parts.  The left side has values of ∆t starting at 0.10 and decreasing to 0.01 along 

with columns for the corresponding s(1 + ∆t) and the average velocity, 

� 

[s(1+ Δt) − s(1)]
Δt

.  

The right side of the table has negative values of ∆t from -0.10 to a value closer to 0, 
namely -0.01, along with the same second and third columns as on the left.  Observing 
the third columns for both sides, the average velocities appear to be converging to 5.20.  
In fact, 

 

� 

lim
Δt→0

s(1+ Δt) − s(1)
Δt

 = 5.20 

so that the instantaneous velocity of this ball at t = 1 sec is 5.20 m/sec.   

Table 2.3.2 Average velocities between (1, s(1)) = (1, 21.1) and (1 + ∆t, s(1 + ∆t)) 
∆t s(1 + ∆t) 

� 

s(1+ Δt) − s(1)
Δt

  ∆t s(1 + ∆t) 

� 

s(1+ Δt) − s(1)
Δt

 

 0.10  21.571  4.710   -0.10  20.531  5.690 
 0.09  21.528  4.759   -0.09  20.592  5.641 
 0.08  21.485  4.808   -0.08  20.653  5.592 
 0.07  21.440  4.857   -0.07  20.712  5.543 
 0.06  21.394  4.906   -0.06  20.770  5.494 
 0.05  21.348  4.955   -0.05  20.828  5.445 
 0.04  21.300  5.004   -0.04  20.884  5.396 
 0.03  21.252  5.053   -0.03  20.940  5.347 
 0.02  21.202  5.102   -0.02  20.994  5.298 
 0.01  21.152  5.151   -0.01  21.048  5.249 
 

Quick Review Question 5 Using Table 2.3.3 of values, estimate 

� 

lim
Δt→0

s(2 + Δt) − s(2)
Δt

 

to one decimal place. 
 
Table 2.33 Table for Quick Review Question 5 
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∆t 

� 

s(2 + Δt) − s(2)
Δt

  ∆t 

� 

s(2 + Δt) − s(2)
Δt

 

0.0005  27.8072  -0.0005  27.7928 
0.0004  27.8058  -0.0004  27.7942 
0.0003  27.8043  -0.0003  27.7957 
0.0002  27.8029  -0.0002  27.7971 
0.0001  27.8014  -0.0001  27.7986 

Derivative 

The limit 

� 

lim
Δt→0

s(a + Δt) − s(a)
Δt

 above has far more applications than instantaneous velocity 

at t = a.  Because of its vast importance, the formula has a special name.  In general, 

when the limit exists, 

� 

lim
Δt→0

s(a + Δt) − s(a)
Δt

 is the derivative of s with respect to t at a.  We 

use two notations for the derivative of y = s(t) with respect to t—the first is 

� 

dy
dt

, and the 

second is s'(t).  For the derivative of s at t = 1, which in this case is 5.20, we write 

� 

dy
dt t=1

or s'(1) = 5.20 m/sec.  Notice that the units for the instantaneous and average 

velocities are the same, m/sec. 
 
Definition  The derivative of y = s(t) with respect to t at t = a is the instantaneous 

rate of change of s with respect to t at a: 

  s'(a) = 

� 

dy
dt t= a

 = 

� 

lim
Δt→0

s(a + Δt) − s(a)
Δt

 

 provided the limit exists.  If the derivative of s exists at a, we say the function is 
differentiable at a. 

 

Quick Review Question 6 Suppose the population P of a colony of bacteria in 
millions is a function of time t in hours.  Give the units of dP/dt. 

 
 Although we will not do so here, we could show for the ball example that the 
derivative of s at t = 0 sec is s'(0) = 15 m/sec.  Thus, initially, when the ball is at height 
s(0) = 11.0 m (see Table 2.3.1), the ball is increasing its height at a rate of 15 m/sec.  
With this information, we can estimate the height of the ball one second later at t = 1 sec 
as 11 + 15 = 26 m.  Because of the pull of gravity, the ball does not get quite that high; 
but the derivative can help us make estimates for the future as well as understand the 
current situation. 
 

Quick Review Question 7 We know from Table 2.3.1 that s(2.5) = 17.875 m.  
Suppose s'(2.5) = -9.5. 
a. Give the units of 2.5. 
b. Give the units of -9.5. 
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c. Using this information, estimate s(3.5).  Include units. 
d. Interpret this information. 

Slope of Tangent Line 
In this section, we consider graphically the instantaneous velocity, or the derivative s'(t).  
Suppose we again wish to examine the velocity of the ball at time t = 1 sec.  If we keep 
zooming in on the graph of the height of the ball y = s(t) at time t = 1 sec, we observe an 
interesting phenomenon—The appearance of these graphs as we zoom in is increasingly 
linear.  Figures 2.3.2 through 2.3.4 show plots of y versus t as we zoom in, first from t = 
0.75 to 1.25 sec, then from t = 0.9 to 1.1 sec, and finally from t = 0.99 to 1.01 sec. At 
close range in Figure 2.3.4, the tangent line to y = s(t) at t = 1 approximates the graph of y 
= s(t). 
 

Figure 2.3.2 From Figure 2.3.1, graph of y = s(t) from t = 0.75 to 1.25 sec 
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Figure 2.3.3 From Figure 2.3.1, graph of y = s(t) from t = 0.9 to 1.1 sec 
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Figure 2.3.4  From Figure 2.3.1, graph of y = s(t) from t = 0.99 to 1.11 sec 
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 In general, the slope of the tangent line to a curve at a point is the derivative of the 
function at that point.  Figures 2.3.5 through 2.3.7 illustrate that the secant line through t 
= 1 and t = 1 + ∆t approaches the tangent line as ∆t gets smaller.  In Figure 2.3.5, the 
change in time is ∆t = 1.25, and the slope of the secant line is as follows: 

 

� 

19.9437 − 21.1
1.25

 = -0.925 

As the next Quick Review Question shows, the slopes for ∆t = 0.75 and 0.25 are 1.525 
and 3.975, respectively (see Figures 2.3.6 and 2.3.7). 
 
Definition  The slope of a non-vertical line through two distinct points (x1, y1) and 

(x2, y2) is (y2 - y1) / (x2 - x1). 

Quick Review Question 8 
a. Show the calculation of the slope of the secant line through (1, 21.1) and 

(1.75, 22.2428) for Figure 2.3.6. 
b. Show the calculation of the slope of the secant line through (1, 21.1) and 

(1.25, 22.0938) for Figure 2.3.7. 
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Figure 2.3.5 Secant line through (1, 21.1) and (2.25, 19.9437) with ∆t = 1.25 sec and 
slope of -0.925 m/sec 
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Figure 2.3.6 Secant line through (1, 21.1) and (1,75, 22.2438) with ∆t = 0.75 sec and 
slope of 1.525 m/sec 
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Figure 2.3.7 Secant line through (1, 21.1) and (1.25, 22.0938) with ∆t = 0.25 sec and 
slope of 3.975 m/sec 
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 As Figures 2.3.5 through 2.3.7 along with the graph of the tangent line in Figure 
2.3.8 illustrate, the secant lines approach the tangent line as ∆t goes to 0.  Thus, the slopes 
of these secant lines approach the slope of the tangent line at t = 1.  The slopes of the 
secant lines through (1, 21.1) and (1 + ∆t, s(1 + ∆t)) are average velocities, and the limit 
as ∆t approaches 0 is the instantaneous velocity, or the derivative, of the function s at 1.  
Thus, we can interpret the derivative at a point as the slope of the tangent line to the 
curve at that point.  We also call this slope the slope of the curve at that point. 
 
Concept Geometrically, the derivative at a point is the slope of the tangent line to the 

curve at that point. 

Figure 2.3.8 Tangent line to curve at (1, 21.1) and slope of 5.2 m/sec 
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 The derivative of s at 1 is a number, 5.20, which is the slope of the tangent line to 
the curve s at t = 1 (see Figure 2.3.8).  However, the tangent lines, and consequently their 
slopes, depend on the point on the curve.  Table 2.3.4 presents a list of the slopes of some 
of the tangent lines to the curve s.  As expected for this graph, the slopes are positive 
where the curve is increasing on the left and negative where the curve is decreasing on 
the right.  Because the slope of the tangent line to the curve, and consequently the 
derivative, depends on t, we can define a derivative function, as follows: 

 s'(t) = 

� 

dy
dt

 = 

� 

lim
Δt→0

s(t + Δt) − s(t)
Δt

,   provided the limit exists 

Table 2.3.4 List of some values of t and the slopes of the tangent lines to s of Figure 
2.3.8at t 

t Slope of Tangent Line at t 
 0.0  15.0 .0 
 0.5  10.1  
 1.0  5.2  
 1.5  0.3  
 2.0  -4.6  
 2.5  -9.5  
 3.0  -14.4  
 3.5  -19.3  

 
Definition The derivative function of y = s(t) with respect to t is the instantaneous rate 

of change of s, provided the limit exists: 

  

� 

dy
dt

 = s'(t) = 

� 

lim
Δt→0

s(t + Δt) − s(t)
Δt

 

 

Quick Review Question 9 Use Table 2.3.4 to evaluate the derivative function at the 
requested values. 
a. s'(0.5)   b. s'(3.0) 

 
 Although we will not verify the result, it can be shown that the derivative function 
for y = s(t) is s'(t) = -9.8t + 15.  As we have justified, s'(1) = 5.20, which is -9.8(1) + 15. 

Quick Review Question 10 Using the fact that s'(t) = -9.8t + 15, determine the 
following along with their units: 
a. s'(1.3) 
b. The slope of the tangent line to s at t = 2.9 sec 
c. The instantaneous rate of change of s at t = 0.4 sec 

Differential Equations 
A differential equation is an equation that contains a derivative.  For example, if y is a 
position of a ball above water at time t, then the rate of change, or derivative, of y with 
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respect to t is the velocity.  Suppose the velocity function is v(t) = dy/dt = s'(t) = -9.8t + 
15, and the initial position, or initial condition, is y0 = s(0) = 11.  Thus, we have the 
following differential equation with initial condition: 
 dy/dt = -9.8t + 15 and y0 = 11 
or 
 s'(t) = -9.8t + 15 and s(0) = 11 
 To solve the differential equation means to find a function y = s(t) that satisfies the 
differential equation and initial condition(s).  As we discuss in the next module, y = s(t) = 
-4.9t2 + 15 t + 11 is the solution to the above differential equation.  Verifying the 
solution, we take the derivative of y = s(t) to obtain dy/dt = s'(t) = -9.8t + 15.  Moreover, 
substituting 0 for t in s(t), we find that y0 = s(0) = 11 also holds.  The function y = s(t) = 
-4.9t2 + 15 t + 11 gives the height above the water as a function of time for the ball 
example of this module.  We can obtain the height values in Table 2.3.1 and Table 2.3.2 
by substituting appropriate values of t into the function. 
 
Definitions A differential equation is an equation that contains one or more 

derivatives. An initial condition is the value of the dependent variable when the 
independent variable is zero.  A solution to a differential equation is a function that 
satisfies the equation and initial condition(s). 

 

Quick Review Question 11 It can be shown that the derivative of y = 3t6 + 7 is 18t5.  
Why is y = 3t6 + 7 not a solution to the differential equation dy/dt = 18t5 with initial 
condition y0 = 14? 

Second Derivative 
Acceleration is the rate of change of velocity with respect to time, and an instantaneous 
rate of change is a derivative.  Thus, the derivative of a velocity function, v(t), is an 
acceleration function, a(t) = v'(t).  However, a velocity function itself is a derivative, the 
derivative of a position function with respect to time; for y = s(t), v(t) = s'(t) = dy/dt.  
Consequently, acceleration is the derivative of the derivative of position.  If we take the 
derivative of a position function and then the derivative of the result, we obtain the 
corresponding acceleration function.  We say that we have taken the second derivative 

of the position function and write a(t) = s''(t) = 

� 

d 2y
dt 2

.  Notice the placements of the 2’s in 

the latter stacked notation.  This notation elicits the units for the second derivative.  If 
velocity is in m/sec, then the units for acceleration are (m/sec)/sec or, inverting and 
multiplying, m/sec2. 
 
Definition  Acceleration is the rate of change of velocity with respect to time. 
 
Definition  The second derivative of a function y = s(t) is the derivative of the 

derivative of y with respect to the independent variable t.  The notation for this 

second derivative is s''(t) or 

� 

d 2y
dt 2

. 
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Quick Review Question 12 
a. Suppose z = f(x) = x3; h(x) =  f'(x) = 3x2; and g(x) =  h'(x) = 6x.  Evaluate f''(x). 
b. Give another notation for f''(x). 
c. If velocity is in ft/sec, give the units for acceleration. 

Exercises 
1. Use the following table of positions (s) of a car at various times (t). 

t (hr) 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 
s (km) 43.2 31.7 22.3 16.5 15.1 18.5 26.1 36.6 48.5 59.8 68.8 

 
a. Give the average velocity with units of the car between t = 5.0 hr and 9.0 hr. 
b. Estimate the velocity with units of the car at t = 6.5 hr. 
c. Estimate the rate of change with units of the car at t = 4.5 hr. 

2. For the graph in Figure 2.3.9, estimate the following: 
a. The average rate of change of the function from x = 0.5 to x = 1.5 
b. The average rate of change of the function from x = 1.5 to x = 2 
c. The slope of the tangent line to the function at x = 1 
d. The instantaneous rate of change of the function at x = 1 
e. The derivative of the function at x = 1 
f. The slope of the tangent line to the function at x = 0.5 
g. The instantaneous rate of change of the function at x = 0.5 
h. The derivative of the function at x = 0.5 

Figure 2.3.9 Graph for Exercise 2 
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3. Table 2.3.5 shows values for 

� 

f (2 + Δx) − f (2)
Δx

 as ∆x approaches 0 through positive 

values on the top part of the table and through negative values on the bottom part of 
the table. Estimate the following to two decimal places: 

a. 

� 

lim
Δx→0

f (2 + Δx) − f (2)
Δx

 

b. f'(2) 

c. 

� 

dy
dx x= 2

, where y = f(x) 

d. The slope of the tangent line to the graph of f at 2 
e. The instantaneous rate of change of f at 2 
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Table 2.3.5 Table for the Exercise 3 
∆x 0.0051 0.0041 0.0031 0.0021 0.0011 0.0001 

� 

f (2 + Δx) − f (2)
Δx

 3.1955 3.2187 3.2419 3.2649 3.2878 3.3107 

       
∆x -0.0051 -0.0041 -0.0031 -0.0021 -0.0011 -0.0001 

� 

f (2 + Δx) − f (2)
Δx

  3.4275  3.4053  3.3829  3.3605  3.3379  3.3152 

 
4. Suppose N = f(t) is the number of atoms of radium-226 at time t, which is in days.  

Because radium-226 is radioactive, the substance is decaying. 
a. Give the units for f'(t). 
b. Give the sign for f'(t). 
c. Give the units for f''(t). 

5. Suppose the number of tuna y = T(t) in the Mediterranean Sea is a function of time t 
in years since 1914.   
a. Give the units of the rate of change of tuna numbers with respect to time. 
b. Give two notations for the rate of change of tuna numbers in 1918. 
c. Is it desirable for this rate to be positive or negative? 
d. Give the units for the second derivative of y. 
e. Give two notations for the second derivative of y in 1918. 

6. Suppose the time of a chemical reaction, T (in minutes), to oxidize an alcohol is a 
function of the amount of a catalyst (alcohol dehydrogenase), a (in milliliters), that 
is present.  Thus, T = f(a). 
a. If f(4) = 13, give the units of 4 and 13. 
b. If f'(4) = -2, give the units of 4 and -2.   
c. Interpret these statements taken together. 

7. Suppose on Day 4 of an epidemic in a school that the rate at which students are 
developing influenza is 25 students/day.   
a. Give an interpretation of this rate as the derivative of a function. 
b. If 263 students have influenza on Day 4, estimate the number of students who 

will have influenza on Day 5. 
8. T = f(t) is the temperature in degrees Celsius of a beaker at time t (in hours) after 

someone places the beaker in a refrigerator.   
a. Give the units for f'(t). 
b. Give the sign for f'(t). 
c. Give the units for f''(t). 

9. The size of a drug's dose, S (in milligrams), depends on the weight of the patient, w 
(in pounds), so that S = f(w).   
a. Interpret f(150) = 200. 
b. Interpret f'(150) = 6. 
c. Using the information from Parts a and b, estimate f(151). 
d. Using the information from Parts a and b, estimate f(155). 

10. Use a computational tool or calculus to solve the following differential equation:  
  dP/dt = 0.3P - 20, P0 = 35 
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Project 
1. Using a computational tool, such as Maple, Mathematica, or MATLAB,  develop a 

file to explain and illustrate the material of this module.  Use different functions 
than appear in the module for your examples.  Employ looping and printing to 
generate sequences of values as in Tables 2.3.1and 2.3.2.   

Answers to Quick Review Questions 
1. a. About 11 m 

b. About 22.5 m 
c. About 1.5 sec 
d. About 3.7 sec 

2. a. Average velocity from 1 to 2 seconds = 

� 

s(2) − s(1)
2 −1

= 21.4 − 21.1
1

 = 0.3 m/sec 

b. Average velocity from 1 to 3 seconds = 

� 

s(3) − s(1)
3−1

= 11.9 − 21.1
2

 = -4.6 m/sec 

3. Approximation of velocity at t = 1 sec = 

� 

s(1.25) − s(0.75)
1.25 − 0.75

 = 

� 

22.0938 −19.4938
0.5

 = 

5.2 m/sec, which in this problem is the same as the mean of the average velocities 
during the first and second seconds.  These values do not necessarily always agree. 

4. a. 2.25 sec  
b. 19.9437 m 
c. 0.75 sec. 
d. 3.0 sec. 
e. 11.9 m 
f. 11.9000 - 19.9437 = -8.0437 m 
g. -8.0437/0.75 = -10.725 m/sec.  With up being positive, the average velocity is 

negative because the ball is falling during this time period. 
5. 27.8 
6. millions of bacteria/hour 
7. a. sec 

b. m/sec 
c. 17.875  + -9.5 = 8.375 m 
d. At time 2.5 sec, after one additional second (at time 3.5 sec), we estimate that 

the height of the ball will be 8.375 m. 

8. a. 

� 

21.1− 22.2438
−0.75

 = 1.525 

b. 

� 

21.1− 22.0938
−0.25

 = 3.975 

9. a. 10.1 
b. -14.4 

10. a. s'(1.3) = -9.8(1.3) + 15 = 2.26 m/sec 
b. s'(2.9) = -9.8(2.9) + 15 = -13.42 m/sec 
c. s'(0.4) = -9.8(0.4) + 15 = 11.08 m/sec 

11. Substituting 0 for t, y = 7, not 14. 
12. a. 6x 
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b. 

� 

d2z
dx 2

 

c. ft/sec2 

Reference 
Hughes-Hallet, Deborah, Andrew M. Gleason, William G. McCallum, et al.  2004.  
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