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Introduction 
In the last module, we examined some of the fundamental concepts of differential 
calculus, while in this module we consider several of the high points of the other major 
part of calculus, integral calculus.  In a sense, integration, or determining the integral of 
a function, is the reverse of differentiation, or finding the derivative.  For example, we 
can integrate the rate of change function for the amount of a radioactive substance to 
determine the total amount of decay over a period of time.  As we discuss in this module, 
we can integrate the velocity function for a ball tossed in the air from a bridge—that is, 
we can integrate the rate of change function for distance of a ball above the water as in 
Module 2.3 on "Rate of Change"—to obtain the total distance covered from one time to 
another. 
 The material in this module is needed for some elective sections in the remainder of 
the text. While the concept of rate of change from the previous module is essential to 
understanding the remainder of the text, the concepts of the current module, though 
extremely important for higher-level computational science, are optional for this 
introduction to the subject. 

Total Distance Traveled and Area 
Suppose a car travels along a straight expressway for 2 hours at a constant velocity of 65 
km/hr.  How far does the car go in that time?  Clearly, the answer is (2 hr)(65 km/hr) = 
130 km.  Figure 2.4.1 gives the graph of this velocity function v = f(t) = 65.  Notice that 
the total distance traveled is the area under this curve from t = 0 hr to t = 2 hr. 

Figure 2.4.1 Graph of velocity function v(t) = 65 km/hr with t in hr 
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Quick Review Question 1 Suppose someone sets the cruise control to drive at 70 
km/hr for half-an-hour.  Then, the speed limit changes, and the person resets the 
cruise control for 60 km/hr for the next hour-and-a-half.  Approximate the total 
distance traveled. 

 
 As another example, suppose a racecar moves with increasing velocity.  The 
velocities in m/sec are recorded at various times, measured in seconds, in Table 2.4.1 and 
are displayed in Figure 2.4.2.  We can estimate the total distance traveled over the 5-
second period in several ways, including calculating under- and over estimates. 

Table 2.4.1 Values for the velocity of a car at certain times 
t (sec) 0 1 2 3 4 5 
v (m/sec) 24 33 40 45 48 49 
 

Figure 2.4.2 Plot of velocities from Table 2.4.1 with t in sec and v in m/sec 
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 One underestimate of the total distance traveled takes the lowest velocity in each 1-
second interval.  For example, during the first second, from t = 0 sec to t = 1 sec, the 
lowest velocity (24 m/sec) occurs initially.  If we travel at a constant velocity of 24 m/sec 
for 1 sec, then during that second we cover a total distance of (24 m/sec) (1 sec) = 24 m.  
As Figure 2.4.3 illustrates, this result is also the area of the rectangle in the first interval 
from the t-axis to the leftmost point (0, 24).  This rectangle has height 24 and width 1.  
Because the velocity is increasing, during the next and each subsequent 1-second interval, 
the minimum velocity also occurs on the left.  Summing the underestimates of the 
distances traveled for the five intervals, we obtain an underestimate of the total distance 
traveled for the 5 seconds, as follows: 
 underestimate = (24)(1) + (33)(1) + (40)(1) + (45)(1) + (48)(1) = 190 m 
Although six points appear in Table 2.4.1 and Figure 2.4.2, for the computation, we use 
only five points, one for each interval.  The estimate, 190 m, for the total distance 
traveled is also the area of the shaded rectangles in Figure 2.4.3. 
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Figure 2.4.3 Underestimate of total distance traveled in m using intervals of 1 sec 
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 We can obtain an overestimate of the total distance traveled by using the largest 
velocity in each of the five intervals.  For this increasing function, these velocities occur 
on the right of each interval.  Consequently, we compute the sum of the areas of the 
rectangles that touch the intervals' rightmost points (see Figure 2.4.4) to obtain an 
overestimate of the total distance traveled: 
 overestimate = (33)(1) + (40)(1) + (45)(1) + (48)(1) + (49)(1) = 215 m 

Figure 2.4.4 Overestimate of total distance traveled in m using intervals of 1 sec 
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 The actual distance is between the two estimates, 190 m and 215 m.  Figure 2.4.5 
illustrates these estimates and shows the difference (25 m) between the two with darker 
shading. 

Figure 2.4.5 Over- and underestimates of the total distance in m traveled from Figures 
2.4.3 and 2.4.4 
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Quick Review Question 2 Suppose after an hour of traveling, a bicyclist starts riding 
up a mountain with decreasing velocity, according to Table 2.4.2: 

Table 2.4.2  Table for Quick Review Question 2 
 
t (hr) 1.0 1.5 2.0 2.5 3.0 
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v (km/hr) 80.5 68.1 44.9 30.1 25.1 
 

a. Using intervals of a half-an-hour, determine the best underestimate of the total 
distance the bicyclist travels up the mountain. 

b. Repeat Part a to obtain an overestimate. 
 
 We can obtain a better estimate by using more frequent velocity measurements.  
Table 2.4.3 and Figure 2.4.6 give the velocities in half-second intervals. 

Table 2.4.3  Additional values for the velocity of a car at certain times 
t (sec) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 
v 
(m/sec
) 

24.0
0 

28.7
5 

33.0
0 

36.7
5 

40.0
0 

42.7
5 

45.0
0 

46.7
5 

48.0
0 

48.7
5 

49.0
0 

 

Figure 2.4.6  Plot of velocities (m/sec) versus time (sec) from Table 2.4.3 

1 2 3 4 5 t

10

20

30

40

50
v

 
  
 As we did for intervals of width 1 for the underestimate, we employ the minimum 
velocity in each interval as if the car were traveling at that velocity throughout that small 
time period.  For example, in the first interval, a car traveling at 24.00 m/sec for 0.5 sec 
covers (24.00 m/sec)(0.5 sec) = 12.00 m during that half second.  We must be careful to 
multiply by the change in time, 0.5 sec; the car does not move 24.00 m during the half-
second interval but only half that amount.  As above, the estimate of the distance is the 
area of the rectangle for the width of the interval to the point.  Figure 2.4.7 shades the 10 
rectangles of width 0.5 whose total area is, as follows: 
 underestimate = 24.00(0.5) + 28.75(0.5) + 33.00(0.5) + 36.75(0.5) +  
40.00(0.5) + 42.75(0.5) + 45.00(0.5) + 46.75(0.5) + 48.00(0.5) + 48.75(0.5) m 
    =  196.875 m 
This area is an underestimate of the total distance traveled, 196.875 m.  To minimize the 
number of multiplications, we can factor out 0.5, adding the velocities and then 
multiplying by the length of the interval, as follows: 
 underestimate  = (24.00 + 28.75 + 33.00 + 36.75 + 40.00 +  
      42.75 + 45.00 + 46.75 + 48.00 + 48.75)(0.5) m  
    =  196.875 m 
Figure 2.4.8 shades the corresponding overestimate with the following computation: 
 overestimate  = 28.75(0.5) + 33.00(0.5) + 36.75(0.5) + 40.00(0.5) +   
      42.75(0.5) + 45.00(0.5) + 46.75(0.5) + 48.00(0.5) +  
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      48.75(0.5) + 49.00(0.5)  
     = (28.75 + 33.00 + 36.75 + 40.00 + 42.75 +  
      45.00 + 46.75 + 48.00 + 48.75 + 49.00) (0.5)  
    =  209.375 m 
Figure 2.4.9 indicates the difference between these two estimates, 209.375 m - 196.875 m 
= 12.5 m, which is one-half the difference for intervals of length 1.  The estimates are 
converging as the width of an interval goes to zero and, simultaneously, the number of 
intervals goes to infinity. 

Figure 2.4.7  Underestimate of total distance traveled in m using intervals of 0.5 sec 
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Figure 2.4.8 Overestimate of total distance traveled in m using intervals of 0.5 second 
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Figure 2.4.9  Over- and underestimates of the total distance in m traveled from Figures 
2.4.7 and 2.4.8 
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 Table 2.4.3 gives the values of Table 2.4.2 along with notations.  The times for the 
velocities are t0 = 0.0, t1 = 0.5, t2 = 1.0,…, t10 = 5.0, and the corresponding velocities are 
f(t0) = f(0.0) = 24.00, f(t1) = f(0.5) = 28.75, f(t2) = f(1.0) = 33.00,…, f(t10) = f(5.0) = 49.00.  
The total segment goes from a = 0.0 to b = 5.0, and we have n = 10 intervals.  We write 

the width of an interval, or the change in t, as ∆t = 

� 

b − a
n

= 5 − 0
10

 = 0.5 sec.  For this 
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example, the underestimate is a left-hand sum, where we use the velocity value on the 
left of each interval, as follows:     
 left-hand sum = 24.00(0.5) + 28.75(0.5) + 33.00(0.5) +   

� 

 + 48.75(0.5) 
  = f(t0)∆t +  f(t1)∆t + f(t2)∆t +   

� 

 + f(t9)∆t 
Similarly, the overestimate is a right-hand sum, where we use the velocity value on the 
right of each interval, as follows: 
 right-hand sum = 28.75(0.5) + 33.00(0.5) +   

� 

 + 48.75(0.5) + 49.00(0.5) 
  =  f(t1)∆t + f(t2)∆t +   

� 

 + f(t9)∆t + f(t10)∆t 
Perhaps we know the function f from a model or by estimation from the data.  For this 
particular function, if the number of intervals approaches infinity with ∆t going to 0, the 
left- and right-hand sums approach 203

� 

1
3 .  Thus, the total distance traveled from t = 0 to  t 

= 5 sec, is 203

� 

1
3  -m, and as the figures indicate, 203

� 

1
3  is also the area under the velocity 

curve in Figure 2.4.10. 

Table 2.4.4 Table 2.4.3 with notation 
 t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 
t (sec) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 
            

 f(t0) f(t1) f(t2) f(t3) f(t4) f(t5) f(t6) f(t7) f(t8) f(t9) f(t10) 
v (m/sec) 24.00 28.75 33.00 36.75 40.00 42.75 45.00 46.75 48.00 48.75 49.00 

 

Figure 2.4.10 Velocity function with t in sec and v in m/sec 
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Quick Review Question 3 Using Quick Review Question 2, give values for the 
following: 
a. a 
b. b 
c. n 
d. ∆t 
e. Times t0, t1, …, tn 
f. Velocities f(t0), f(t1), …, f(tn), where v = f(t) is the velocity function 

Definite Integral 
The limit of such a sum has so many applications other than computation of the total 
distance from velocity and the area under the curve that it has a special name and 
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notation, the definite integral, as follows:
 

  

� 

f (t)dt
a

b∫ = lim
n→∞

(left - hand sum) = lim
n→∞

( f (t0)Δt + f (t1)Δt ++ f (tn−1)Δt) 
and 
 

  

� 

f (t)dt
a

b∫ = lim
n→∞

(right - hand sum) = lim
n→∞

( f (t1)Δt + f (t1)Δt ++ f (tn )Δt) , 
where the width of an interval ∆t = (b - a)/n gets smaller as n gets larger.  
 
Definitions If f is continuous (unbroken) for a ≤ t ≤ b, then the left-hand sum is 
  left-hand sum = f(t0)∆t + f(t1)∆t + … + f(tn - 1)∆t 
 and the right-hand sum is 
  right-hand sum = f(t1)∆t + f(t2)∆t + … + f(tn)∆t 
 where ∆t = (b - a)/n.  The left- and right-hand sums are called Reimann sums. 
 
Definition The definite integral of f from a to b is  
  

  

� 

f (t)dt
a

b∫ = lim
n→∞

(left - hand sum) = lim
n→∞

( f (t0)Δt + f (t1)Δt ++ f (tn−1)Δt) 
 and 
  

  

� 

f (t)dt
a

b∫ = lim
n→∞

(right - hand sum) = lim
n→∞

( f (t1)Δt + f (t1)Δt ++ f (tn )Δt)  
 The function f is the integrand, and a and b are the upper and lower limits of 

integration, respectively.  
 

Quick Review Question 4 Suppose v = f(t) is the continuous (unbroken) velocity 
function for the cyclist in Quick Review Question 2.  Give the following: 
a. The definite integral for the total distance the cyclist travels during the 

indicated time up the mountain 
b. The definite integral for the area under the curve during that period 
c. The limits of integration 

Total Change 
Above, we saw that the definite integral of a velocity function from time t = 0.0 to time t 
= 5.0 sec gives the total change in distance during that period.  Velocity is the rate of 
change of position with respect to time, so the definite integral of the rate of change of 
position yields the total change in position.  In general, the definite integral of a rate of 
change of a function is the total change in that function.  Because a rate of change is a 
derivative, the following expresses this fact symbolically: 

 

� 

F '(t)dt
a

b∫ =
total change in F(t)
from t = a to t = b

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = F(b) − F(a) 

 For example, suppose the instantaneous rate of change of the number of 
disintegrations per minute (dpm) per gram (A) of radioactive carbon-14 in a gram of a 
dead tree is dA/dt = -15.3 e-0.000121t dpm/g/year from the time t the tree dies (Higham; 
Mahaffy).  An estimate of the total change in the number of particles of carbon-14 
between years 10 and 20 is as follows: 
 

� 

A'(t)dt
10

20∫ = (−15.3e−0.000121t )dt
10

20∫ = A(20) − A(10)  
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Using a computational tool that integrates or knowledge of integration, we can calculate 
the answer as approximately -152.723 dpm/g.  From year 10 to year 20, a gram of carbon 
from the dead tree loses about 153 dpm per gram of carbon-14. 

Quick Review Question 5 Suppose at time t = 5 hr the rate of change of a population 
of bacteria is 417(2t).   
a. Give the appropriate notation to estimate the increase in the number of 

bacteria from t = 5 hr to t = 9 hr. 
b. Using the answer from Part a in a computational tool that integrates, we can 

calculate this increase in the population as about 288,770 bacteria.  If the 
number of bacteria at time t = 5 hr is about 18,650, estimate the number of 
bacteria at time t = 9 hr. 

Fundamental Theorem of Calculus 
We have observed that the definite integral of a rate of change, or derivative, of a 
function gives the total change in that function.  This result is the essential connection 
between differential and integral calculus, and the name of the theorem that explicitly 
states the relationship, The Fundamental Theorem of Calculus, indicates its 
significance. 
 
The Fundamental Theorem of Calculus If f is continuous (unbroken) on the interval 

from a to b and f(t) = F'(t) is the derivative, or rate of change, of F with respect to t, 
then 

  

� 

f (t)dt
a

b∫ = F(b) − F(a)  
 or 
  

� 

F '(t)dt
a

b∫ = F(b) − F(a)  
 That is, the definite integral of a derivative, or a rate of change, of a function is the 

total change in the function from the lower limit of integration to the upper. 
 
 If the derivative of F is f, or F'(t) = f(t), we call the function F an antiderivative of 
f.  For example, we can show that one antiderivative of the velocity function f(t) = -t2 + 
10t + 24, whose graph is in Figure 2.4.10, is F(t) = -t3/3 + 5t2 + 24t.  An infinite number 
of antiderivatives exist for f(t) = -t2 + 10t + 24, because the derivative of -t3/3 + 5t2 + 24t 
+ C, where C is any constant, is also -t2 + 10t + 24.  Thus, -t3/3 + 5t2 + 24t + 1, -t3/3 + 5t2 
+ 24t + 37.8, -t3/3 + 5t2 + 24t – 3, etc. are all antiderivatives of -t2 + 10t + 24.  We call the 
most general antiderivative of f(t) = -t2 + 10t + 24, namely -t3/3 + 5t2 + 24t + C for 
arbitrary constant C, the indefinite integral of f and employ a similar notation to that of 
the definite integral, as follows: 

 

� 

(−t 2 +10t + 24) dt∫ = − t
3

3
+ 5t 2 + 24t + C  

 
Definition F is an antiderivative of f if F'(t) = f(t), or the derivative of F is f. 
 



2.4  Integral Calculus  9 

 9 

Definition The indefinite integral of f(t) is F(t) + C, where F'(t) = f(t) and C is an 
arbitrary constant.  The notation for the indefinite integral is as follows: 

  

� 

f (t)dt∫ = F(t) + C  

Quick Review Question 6 The derivative of 3x6 is 18x5. Using these functions, 
complete the following statements: 
a.    is an antiderivative of   . 
b. 

� 

∫  =    . 
  
 The velocity function f(t) = -t2 + 10t + 24 is a rate of change, or derivative, of 
position with respect to time.  The definite integral of f from t = 0 to t = 5 hr is the total 
change in the position.  F(t) = -t3/3 + 5t2 + 24t is an antiderivative of f, or F'(t) = f(t).  
Thus, 
 

� 

(−t 2 +10t + 24) dt
0

5∫ = F(5) − F(0)  
We substitute 5 for t in F(t) and subtract the substitution of 0 for t in F(t), as follows: 
 F(5) – F(0) = (-(53)/3 + 5(52) + 24(5))  -  (-(03)/3 + 5(02) + 24(0)) = 203

� 

1
3  

This value is the total change in position indicated above. 
 To recap, if a function f has an antiderivative F, then to calculate the definite 
integral of f from a to b, we compute F(b) – F(a).  However, not all functions have 
antiderivatives.  In such cases, we estimate the definite integral using a technique of 
numeric integration.  We consider several such methods in the text.  Many 
computational tools employ numeric integration techniques in their computations of 
definite integrals. 

Quick Review Question 7 Using the fact that 3x6 is an antiderivative of 18x5, compute 

� 

18x 5dx
1

2∫  

Differential Equations Revisited 
Module 2.3 on "Rate of Change" defines a differential equation as an equation that 
contains a derivative.  For example, suppose y is the position of a bicyclist at time t, and 
the following differential equation for the rate of change of y with respect to t gives the 
bicyclist's velocity function: 
 dy/dt = -t2 + 10t + 24 
We take the indefinite integral to find a general position function, as follows: 

 

� 

(−t 2 +10t + 24) dt∫ = − t
3

3
+ 5t 2 + 24t + C  

Thus, the general position function is y = -t3/3 + 5t2 + 24t + C.  We must have additional 
information to determine C.  Frequently, we know the initial value of the function.  For 
example, suppose initially, at time t = 0, the bicyclist is at position y0 = 30 km from a 
starting location.  Substituting 0 for t and 30 for y, we obtain a specific solution, namely, 
y = -t3/3 + 5t2 + 24t + 30, to the differential equation. 
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Quick Review Question 8 Using the fact that 

� 

18x 5dx∫ = 3x 6 + C  from Quick Review 
Question 7, solve the differential equation dy/dx = 18x5 with initial condition y0 = 
14. 

Exercises 
1. Suppose someone standing on a bridge throws a ball straight up over the water.  

With up being positive, suppose the velocity function for the ball is v(t) = 15 - 9.8t 
in m/sec. 
a. When is the velocity zero?  At this instant, the ball is at its highest point. 
b. Over what time period is the ball going up? 
c. Generate a table of values from t = 0 to t = 4 similar to Table 2.4.3 with ∆t = 

0.5. 
d. Using these values, under- and overestimate the total change in position 

(height) from t = 0 to t = 1.5 sec. 
e. Using these values, under- and overestimate the total change in position from t 

= 2 to t = 4 sec.  Why is your result negative? 
f. Use a computational tool that integrates or an integration formula from 

calculus to solve the differential equation dy/dt = 15 - 9.8t with initial 
condition y0 = 11 m for the position (height) function y(t).  The solution is the 
height function whose graph is in Figure 2.3.4 of the module "Fundamental 
Concepts of Differential Calculus." 

g. Using the position function in Part f, determine when the ball hits the water.  
At this instant, the position of the ball is at 0 m. 

h. Graph the velocity function from time t = 0 to t = 4 sec. 
i. Using the formula for the area of a triangle and your answer from Part a, 

determine the area under the velocity curve from t = 0 sec to the time at which 
the velocity is zero.  The area of a triangle is 0.5bh, where b is the base and h 
is the height. 

j. Using your answer from Part i, determine the total change in position of the 
ball from the time it is thrown until the time it reaches its highest point. 

k. Using the formula for the area of a triangle (see Part i) and your answers from 
Parts a and g, determine the area between the velocity curve and the t-axis 
from the time at which the ball is at its highest point until it hits the water.   

l. Using your answer from Part k, determine the total change in position of the 
ball from the time at which the ball is at its highest point until it hits the water.  
Why should your answer be negative?   

m. Using your answers from Parts j and l, determine the ball's total change in 
position from t = 0 until it hits the water.  How is your answer related to the 
initial condition y0 = 11 m? 

n. Using your answer for the position function from Part f, determine the ball's 
total change in position from t = 0 until it hits the water.  Do your answers 
from this and Part m agree? 

2. Use the facts that 1 meter = 3.281 feet and 1 mile = 5280 feet, to compute the 
following. 
a. The velocity 65 km/hr from Figure 2.4.1 in miles per hour (mph) 
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b. The velocities 70 km/hr and 60 km/hr from Quick Review Question 1 in mph 
c. The velocities 24 m/sec and 49 m/sec from Table 2.4.1 in ft/sec 
d. The total distance traveled (203

� 

1
3  m) for that example in feet 

e. The velocities 80.5 km/hr and 25.1 km/hr from Quick Review Question 2 in 
mph 

f. Your answer for an underestimate total distance traveled from Quick Review 
Question 2a in miles 

3. For Quick Review Question 5, use a computational tool that integrates or an 
integration formula from calculus to obtain the increase in the number of bacteria 
from t = 5 hr to t = 9 hr.  

4. Suppose that Q is the total quantity of salt in pounds in a reservoir.  During a certain 
period of time, the amount of salt is increasing due to runoff from rains at the rate 
dQ/dt = 10e-0.01t pounds/day.   
a. Generate a table of values from t = 100 to t = 250 days similar to Table 2.4.3 

with ∆t = 50 days. 
b. Using these values, under- and overestimate the total change in salt from t = 

100 to t = 250 days. 
c. Repeat Part a using ∆t = 25 days. 
d. Repeat Part b using ∆t = 25 days. 
e. Use integration with an appropriate computational tool or an integration 

formula from calculus to determine the total change in salt from t = 100 to t = 
250 days. 

f. Repeat Part e for t = 0 to t = 250 days. 
g. Use a computational tool that integrates or knowledge of calculus to solve the 

differential equation with initial condition Q0 = 0 pounds. 

Project 
1. Using a computational tool that integrates, develop a document to explain and 

illustrate the material of this module.  Use different functions than appear in the 
module for your examples.   

Answers to Quick Review Questions 
1. 70(0.5) + 60(1.5) = 125 km.  The velocity is multiplied by the length of time for 

each segment. 
2. a. (68.1)(0.5) + (44.9)(0.5) + (30.1)(0.5) + (25.1)(0.5) = 84.1 km. Each interval 

lasts 0.5 hours.  There are four half-hour periods, so the sum consists of four 
terms.  Because the function is decreasing, we use the velocities at the end (on 
the right) of each interval for the underestimate. 

b. (80.5)(0.5) + (68.1)(0.5) + (44.9)(0.5) + (30.1)(0.5) = 111.8 km. Because the 
function is decreasing, we use the velocities on the left of each of the four 
intervals for the overestimate.  

3. a. a = 1 
b. b = 3 
c. n = 4 
d. ∆t = 0.5 
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e. t0 = 1.0, t1 = 1.5, t2 = 2.0, t3 = 2.5, t4 = 3.0 
f. f(t0) = 80.5, f(t1) = 68.1, f(t2) = 44.9, f(t3) = 30.1, f(t4) = 25.1 

4. a. 

� 

f (t)dt1
3∫  

 b. 

� 

f (t)dt1
3∫  

c. 1 and 3 
5. a. 

� 

417 2t( )5
9∫ dt  

b. 307,420 bacteria 
6. a. 3x6 is an antiderivative of 18x5 

b. 

� 

18x 5dx∫ = 3x 6 + C  
7. 189 = 3(2)6 – 3(1)6  
8. y = 3x6 + 14 
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